Visualizing Rugby Game Styles Using Self-Organizing Maps
نویسندگان
چکیده
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Visualizing Ontology Components through Self-Organizing Maps
This paper describes a method for identifying Ontology components by using Self-Organizing Maps. Our system represents the knowledge contained in a particular digital archive by assembling and displaying the ontologies components. This novel approach provides an alternative solution to the problem of classifying on-line information and retrieval, support mechanisms that explore domains, and all...
متن کاملVisualizing Demographic Trajectories with Self-Organizing Maps
In recent years, the proliferation of multi-temporal census data products and the increased capabilities of geospatial analysis and visualization techniques have encouraged longitudinal analyses of socioeconomic census data. Traditional cartographic methods for illustrating socioeconomic change tend to rely either on comparison of multiple temporal snapshots or on explicit representation of the...
متن کاملVisualizing self-organizing maps with GIS
Self-organizing maps (SOM) are a powerful tool for detecting patterns in large, multi-dimensional data sets. Additional visualization techniques have been developed to support the user to gain insight into its structure. For complex data sets, even these techniques are not easily interpretable. Most of them consist of a grid where each cell contains a single value. Such a structure can be seen ...
متن کاملVisualizing Changes in Data Collections Using Growing Self-Organizing Maps
* Acknowledgements. The work presented in this article was partially supported by BTexact Technologies, Adastral Park, Martlesham, UK. Abstract In previous work we have proposed a modification of the standard learning algorithm for self-organizing maps that iteratively increases the size of the map during the learning process by adding single neurons. The main advantage of this approach is an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Computer Graphics and Applications
سال: 2016
ISSN: 0272-1716
DOI: 10.1109/mcg.2016.115